
Microwave billiards with broken time reversal invariance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5745

(http://iopscience.iop.org/0305-4470/29/18/009)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5745–5757. Printed in the UK

Microwave billiards with broken time reversal invariance
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Abstract. We consider a microwave resonator with three single-channel waveguides attached.
One of these serves to couple waves into and out of the resonator; the remaining two are
connected to form a one-way handle so as to break time reversal invariance. The poles of
the input–output scattering coefficient of such a resonator are shown to be the eigenvalues of
a non-Hermitian effective ‘Hamiltonian’Heff = H − i0, the anti-Hermitian part0 of which
has rank 1 and is responsible for the breaking of time reversal invariance. All of the spectral
statistics recently observed for such a microwave billiard are reproduced quantitatively by taking
H and 0 as random matrices. In particular, the distribution of nearest-neighbour spacings of
the resonances is close to that of the GUE whenH belongs to the GOE corresponding to a
Sinai shape of the resonator; linear level repulsion results whenH belongs to the Poissonian
ensemble as it corresponds to a rectangular resonator.

1. Introduction

Already in the 1960s Wigner and others noticed that the spectra of nuclei can be excellently
modelled with the help of the Gaussian orthogonal ensemble (GOE) of random matrices
[1]. In particular, the distribution of nearest-neighbour distances, the so-called number
variance and spectral rigidity, but also spectral properties involving three- and four-point
correlations could be explained in that way [2]. The GOE is appropriate if time-reversal
(T) symmetry holds. In cases of broken T symmetry the Gaussian unitary ensemble (GUE)
applies. Whereas the number of experimental realizations of GOE systems is numerous,
until recently there was no experimental example for a spectrum of the GUE type. Then,
30 years after the formulation of random-matrix theory, two experimental realizations for
which one expects to show the GUE spectral statistics were reported simultaneously [3, 4].
In both cases the spectra of microwave billiards are studied, and in both setups T invariance
is broken by ferritic material inside the resonator. The two experiments differ, however, in
one essential aspect. Soet al [3] coated one wall of the resonator with ferrites and used
the modified reflection properties to break T invariance. Stoffregenet al [4], on the other
hand, attached a microwave by-pass with a built-in microwave isolator to the billiard such
that the by-pass assumes unidirectionalabsorptionproperties which break the symmetry of
time reversal. In both experiments quadratic level repulsion was found at small distances
as is expected for the GUE. However, it is not obvious at all that the GUE can be applied
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to systems containing strongly absorbing channels. But it was shown phenomenologically
in [4] that a ‘Hamiltonian’Heff = H − i0 , whereH corresponds to the original billiard
and where0 takes into account the unidirectional damping, can explain all but one of
the experimental findings. Whereas in a Sinai billiard with broken symmetry quadratic
level repulsion was found as expected, in the corresponding rectangular billiard linear level
repulsion was observed, and this latter fact remained to be explained.

It is the purpose of this paper to tighten up the phenomenological arguments of [4] and
to fill the gap mentioned. To this end a scattering-matrix approach is employed, as familiar
from nuclear physics. The measuring antenna constitutes one scattering channel, whereas
two further channels are given by the entrance and exit of the unidirectional transmission
line. Absorption in the walls could be taken into account by further channels but is
neglected here since its effect is quite small compared to the strong damping introduced in
the unidirectional handle. It was shown recently that the scattering approach is very well
suited to describing reflection and transmission properties of microwave billiards [5, 6].
In the present case, too, this approach will prove capable of quantitatively explaining
all experimental findings, including the linear level repulsion in rectangular billiards with
broken T symmetry.

2. The model

Before going into details we would like to stress one peculiarity of the experiment of [4]
which we propose to analyse here. Time reversal invariance is broken by means of a
unidirectional handle which supports onlyone propagating mode. The symmetry breaking
perturbation is thus ofrank 1 (i.e. the symmetry breaking part is a projection operator on
a one-dimensional subspace); on the other hand it must be strong. This is in contrast to
standard models of symmetry breaking where the perturbation is of the same rank as the
unperturbed matrix and can be small. Having this in mind we should be prepared to find
results differing in several aspects from the predictions of the GUE or ensembles which
interpolate between the GOE and the GUE [7].

Let us first look at a resonator with three waveguides attached each of which supports
exactly one propagating mode. One of the waveguides serves to couple microwaves into
and out of the resonator. The remaining two waveguides represent the entrance and exit
ports of the attached unidirectional ‘handle’. To ‘form’ the handle we shall eventually join
the latter two parts.

Wave scattering in such a three-port system is described by a unitary 3× 3 S-matrix of
the structure [8]

S = I + 2iW † 1

H − E − iWW † W (2.1)

whereH is the Hamiltonian of the resonator, taken to be anN × N matrix, andW an
N × 3 matrix. The three-column vectorsXn (n = 1, 2, 3) of W describe the coupling of the
resonator to the three waveguides and are related to the values of the internal wavefunction at
the coupling points. The three vectors in question need neither be normalized nor mutually
orthogonal.

The S-matrix maps the incoming states in the waveguides into outgoing ones,S|in〉 =
|out〉. Let us label by 1 the waveguide (microwave cable) through which the measurement
is performed. The waveguides 2 and 3 then represent the exit and entrance parts of the
handle to the resonator. The wavefunctionsun inside the waveguides read

un(y) = aneikny + bne−ikny n = 1, 2, 3 (2.2)
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with y denoting the distance measured from the entrance point andkn being the
corresponding wave vector. TheS-matrix couples the vectorsa = (a1, a2, a3) and
b = (b1, b2, b3),

b = Sa. (2.3)

The one-way character of the handle is imposed by coupling together the waveguides 2 and
3 and requiring

a3 = 0

a2 = b3.
(2.4)

These properties mimic dissipation and imply non-unitarity of theS-matrix. Note that the
dissipation inside the handle does not require the coefficientb2 to be equal to zero. The
waves entering the handle in the ‘prohibited’ direction and described by this coefficient
are fully dissipated and do not play any role in the further consideration. Inserting the
restrictions (2.4) into the input–output relation (2.3) we get the outputb1 through channel
1 in terms of the inputa1 as

b1 = S̃a1 (2.5)

with the scattering coefficient

S̃ = S1,1 + S1,2S3,1

1 − S3,2
. (2.6)

Obviously, the scattering coefficientS̃ represents the reflection amplitude the modulus of
which is measured in the experiment. With the help of the general representation (2.1) of
the S-matrix we may rewriteS̃ as

S̃ = 1 + X
†
1[R + RX2(1 − S3,2)

−1X
†
3R]X1 (2.7)

with R the resolvent:

R = 2i(H − E − iWW †)−1. (2.8)

Decomposing

(1 − S3,2)
−1 =

∞∑
n=0

(S3,2)
n =

∞∑
n=0

(X
†
3RX2)

n (2.9)

and using the identity

X2(1 − S3,2)
−1X

†
3 = X2X

†
3

∞∑
n=0

(RX2X
†
3)

n (2.10)

we find

S̃ = 1 + X
†
1

[
R + RX2X

†
3

∞∑
n=0

(
RX2X

†
3

)n

R

]
X1

= 1 + X
†
1

∞∑
n=0

(RX2X
†
3)

nRX1

= 1 + X
†
1(1 − RX2X

†
3)

−1RX1

= 1 + X
†
1(R

−1 − X2X
†
3)

−1X1. (2.11)
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Upon writing out the resolventR we obtain our final form of the scattering coefficient,

S̃ = 1 + 2iX†
1

1

Heff − E − iX1X
†
1

X1 (2.12)

with the non-Hermitian ‘effective Hamiltonian’

Heff = H − i(X2 + X3)(X2 + X3)
† − i(X2X

†
3 − X3X

†
2) = H − iP + Q. (2.13)

Here we have introduced a Hermitian (non-normalized) projectorP = (X2+X3)(X2+X3)
†

as well as a second Hermitian operatorQ = −i(X2X
†
3−X3X

†
2). We have not includedX1X

†
1

in Heff since the coupling of the antenna to the resonator is weak and only gives rise to small
shifts and broadenings of the resonances [6] which can be neglected in the present context. It
is the influence of the strongly coupled one-way handle which we are after, and that influence
is accounted for in the effective Hamiltonian. We may identify the measured resonances
with the eigenvalues of the operatorHeff. The interaction term inHeff was divided into
two parts because of their physical distinction. The first part,−iP , is non-Hermitian and
thus primarily accounts for the absorption, in the ferritic material, of all waves entering
the one-way handle in the forbidden direction. The second part,Q, is Hermitian and can
therefore not be associated with the unidirectionality of the handle. Both interaction terms
constitute strong perturbations of the HamiltonianH of the closed resonator; the absorptive
part−iP must be strong since the complete or nearly complete absorption of waves entering
the handle in the forbidden sense cannot be a small perturbation; the Hermitian partQ has
no reason to be small either since it owes its existence to the same two coupling vectors
X2, X3, as does its non-Hermitian partner. At any rate, the absorptive coupling must be
strong enough to bring about an appreciable change of the spectral statistics.

It is also important, at this point, to realize that upon traversing the handle in the allowed
sense a wave picks up a phase shift. The coupling vectorsX2, X3 must thus be taken as
complex.

We have numerically diagonalized the effective HamiltonianHeff for two types of
resonator HamiltoniansH , for one type drawingN × N matrices withN = 100 from
the GOE (to simulate Sinai or other chaotic billiards) and for the other type drawing from
the so-called Poissonian ensemble (PE) of diagonal matrices (to simulate rectangular or
other regular billiards). These matricesH were normalized such as to have the eigenvalues
confined to the interval [−2, 2], in the first case by choosing the radius in Wigner’s semicircle
law as 2, in the second case by working with independent diagonal elements covering the
interval in question according to a box distribution or a Gaussian. To realize the interaction
term in Heff we chose the coupling vectors each withN independent complex components
with identical Gaussian distributions of zero mean and width

√
g/N ,

〈Xi〉 = 0 〈|Xj |2〉 = g/N j = 2, 3 (2.14)

thus introducing a coupling strengthg. To justify such a choice we recall that the vector
componentXi is proportional to the value9(r0) of the internal wavefunction at the
coupling pointr0. For the case of nonintegrable (closed) billiards Gaussian behaviour of the
wavefunction is predicted by the Gaussian ensembles. For integrable billiards, on the other
hand, no such theoretical backing is available. We have therefore convinced ourselves that
in that case results are qualitatively unchanged when the Gaussian distribution is replaced
by another distribution (box, Poisson, or even delta in which later case no randomness at
all is allowed).

For sufficiently large values of the coupling constant, in practice forg larger than about
5, theN eigenvalues ofHeff fall into two well separated clouds: one eigenvalue (the number
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1 being due to the rank of the projectorP ) is nearly imaginary with its imaginary part near
−g while the remainingN −1 eigenvalues are nearly real, with imaginary parts of the order
of −1/g and their real parts covering the same interval as do the unperturbed eigenvalues of
H . Clearly, it is the latterN −1 nearly real eigenvalues that we must take as representatives
of the measured resonances, their real parts giving the locations and their imaginary parts
giving the widths of the resonances. The large size of the coupling constantg is justified by
the analysis done in [6], which shows that under the experimental settings we are discussing
here the appropriate value ofg aroundg ≈ 8.
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Figure 1. Distribution of resonance spacingsP(S) versusS for the effective HamiltonianHeff

with H taken from the Poisson ensemble (a), GOE (b) and GUE (c). The full curves correspond
to the nearest-neighbour spacing distribution for the PE and GOE (a), and for the GOE and
GUE (b) and (c).

The strong-coupling limit of largeg is indeed of relevance for us since only then do
well-separated resonances arise, the strong damping of two ‘modes’ notwithstanding. It is
then meaningful to investigate the distributionP(S) of the spacingsS of nearest-neighbour
resonances, after properly unfolding the spectrum to a constant mean density of resonances.
The resulting spacing distributions were made smooth by collecting data from several
thousand matricesHeff for each type. Much to our satisfaction the spacing distributions,
depicted in figure 1, reveal linear repulsion for ‘regular’ resonator HamiltoniansH and
quadratic repulsion in the ‘chaotic’ case, i.e. forH drawn from the GOE. We have also
admitted resonator Hamiltonians from the GUE and found that the quadratic repulsion
characteristic for the GUE remains for the matricesHeff, as also shown in figure 1. The
figure shows that the spacing distribution found forH from the PE differs from that of
the GOE for large spacings; the similarity does not go much beyond the linearity ofP(S)
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Figure 2. Number variance62(L) versusL for the effective HamiltonianHeff with H taken
from the PE (a), the GOE (b), and the GUE (c). The full curves correspond to the theoretical
curves for the PE and GOE (b), and for the GOE and GUE (b) and (c).

for small S; analogously, theP(S) arising forH from the GOE resembles closely that of
the GUE only for small spacings. We would like to emphasize that all of our results for
P(S) are insensitive to the precise value of the coupling strengthg, provided that strength
is larger than about 5.

For the number variance62 shown in figure 2 the situation is analogous. Here the
additional channel has the effect that forH taken from PE or GOE, the number variance
62(L) follows closely the GOE and GUE curves, respectively, forL < 1. For largerL
values, deviations of62(L) towards PE and GOE behaviour, respectively, is found. Again
the additional channel has no influence, ifH is taken from the GUE.

In all these respects our numerical findings agree with the experimental results of [4].
The breaking of time reversal invariance by a one-way handle, modelled here by a non-
Hermitian perturbation of rank 2 inHeff, increases the degree of level repulsion from linear
to quadratic if enforced on a chaotic billiard; if the unperturbed billiard is regular, the
one-way handle brings about linear repulsion, i.e. again increases the degree of repulsion
by 1. Nonuniversal behaviours ofP(S) for large spacings, much as those seen in figure 1,
were also observed experimentally. This behaviour may be blamed on the low rank of the
perturbation breaking the symmetry. Upon increasing the number of channels supported by
the handle and working with a Sinai-type unperturbed resonator we would expect to incur
a spacing distribution approaching the universal GUE curve.

Before deepening the comparison with experiments we propose to pause for an intuitive
explanation of our numerical findings on symmetry breaking in the following two sections.
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3. Three-pole approximations

Since the interaction partsP andQ of the effective HamiltonianHeff are of rank 1 and 2,
respectively, it is convenient to evaluate the eigenvalues ofHeff using resolvent equations.
For the resolventReff(E) = (Heff − E)−1 of Heff we have

Reff(E) = 1

1 + (−iP + Q)R(E)
R(E) (3.1)

with R(E) = (H − E)−1. Since the poles ofReff(E) coincide with the eigenvalues ofHeff

the eigenvalue problem forHeff is equivalent to solving the equation

(−iP + Q)R(E)f = −f. (3.2)

In other words, the parameterE must be chosen such that the operator(−iP + Q)R(E)

has an eigenvectorf with eigenvalue−1. At this point the low ranks ofP andQ come in
helpful: the vectorf is spanned by the two vectorsX2 andX3, whereupon we are led to
diagonalizing a 2× 2 matrix.

Moreover, in the strong-coupling limit of interest to us the components of the vectors
X2, X3 are typically large such that the matrix elements of the interaction−iP + Q are of
the orderg � 1. The eigenvalue equation (3.2) thus simplifies to

(−iP + Q)R(E)f = 0. (3.3)

The rootsE of the foregoing equation can be identified with the real parts of thoseN − 1
eigenvalues ofHeff which lie close to the real axis and thus give the measured resonances.

We propose to discuss the influence of the perturbations−iP andQ on the spectrum of
Heff separately. Let us start with the dissipative term−iP = −i(X2 +X3)(X2 +X3)

† which
as already mentioned is of rank 1. The vectorf in question must thus be proportional
to (X2 + X3). Using this observation we may rewrite the equationPR(E)f = 0 in the
eigenrepresentation of the unperturbed resonator HamiltonianH as the algebraic equation

F(E) =
∑

n

|X(n)

2 + X
(n)

3 |2
En − E

= 0 (3.4)

whereX
(n)
j are the components of the vectorXj , Xj = (X

(1)
j , . . . , X

(N)
j ), and theEn are the

eigenvalues ofH . Clearly, the functionF(E) is monotone meromorphic with poles located
at En. Between two poles there is exactly one zero ofF(E). Moreover, if three poles
cluster together the two zeros locked up in between come close to each other. To analyse
the distributionP(S) of nearest-neighbour spacingsS for smallS it is enough to restrict the
sumF(E) in (3.4) to only three terms, those whose poles lock up the two colliding zeros
of F(E). Then (3.4) becomes a quadratic equation the zeros of which are real and must
coincide for a crossing of two resonances. To write out the separation of the two roots of
the quadratic equation in question we set, without loss of generality, the zero of energy on
the middle one of the three poles ofF , E1 = 0, such that of the neighbouring poles one,
sayE0, is negative while the other one,E2, is positive; to further facilitate the notation we
write wn = |X(n)

2 + X
(n)

3 |2 for the weights of the three poles in consideration and set, again
without loss of generality,w1 = 1. The separation1 of the two roots is then given by

4(1 + w0 + w2)1
2 = (E2(1 + w0) + E0(1 + w2))

2 − E0E2(1 + w0 + w2). (3.5)

Since E0E2 6 0, 12 is manifestly non-negative as it must be. To enforce a crossing
of resonances,1 = 0, one must necessarily haveE0 = E2 = 0, i.e. a coincidence
of next-nearest neighbours among the levels of the unperturbed resonator Hamiltonian.
This observation immediately allows one to establish the degree of repulsion between



5752 F Haake et al

the resonances through the so-called codimension of the crossing, i.e. the number of real
parameters necessary to enforce the crossing: the degree of repulsion is smaller by 1 than
the codimension [9]. For a regular resonator as, e.g., one of rectangular shape (apart
from the attached handle) the unperturbed eigenvaluesEn have Poissonian statistics, i.e.
are independent of one another and have no inhibitions to cross; two real parameters then
suffice to induce a collision of three neighbours,E0 = E1 = E2; the two resonances locked
up in between them are then also degenerate; we are thus led to expect linear repulsion
between the resonances, i.e. the near-real eigenvalues ofHeff. On the other hand, if the
unperturbed HamiltonianH is a typical member of the GOE, as is the case for resonators
of the Sinai type, the codimension of a triple degeneracy is 3 from which fact we infer
quadratic repulsion of our resonances.

Since it may not be widely known that for real symmetric matrices (of which a GOE
matrix is an example) three parameters are needed to enforce a triple degeneracy in its
spectrum, it may be well to point out that this question may be decided, in the sense of
perturbation theory of nearly degenerate levels, by studying real symmetric 3× 3 matrices.
To arrange a coincidence of the three real roots of the cubic secular equation of such a
matrix one indeed need three controllable real parameters.

To conclude the investigations of this section we turn to showing that the Hermitian
termQ in the interaction part ofHeff cannot change the behaviour induced by the dissipative
term. In particular, in spite of being complex Hermitian and having matrix elements of the
same order of magnitude as its dissipative partner just discussed, the operatorQ by itself
could not bring about quadratic level repulsion in the chaotic case, due to its being of rank
2. To see this we must discuss the equationQR(E)f = 0 . The vectorf may now be
sought as a linear combination of the two vectorsX2 andX3; this is most conveniently done
with the help of the projection ansatzf = (X2X

†
2 − X3X

†
3)h with h an arbitrary vector. By

again employing the eigenrepresentation of the unperturbed resonator HamiltonianH we
now find the equation∑

n6=m

|X(n)

2 |2|X(m)

3 |2 − X
(n)

2 X
(n)∗
3 X

(m)∗
2 X

(m)

3

(En − E)(Em − E)
= 0. (3.6)

To investigate the spacing distribution of the roots of the foregoing equation for smallS

we restrict once more the sum to one over three neighbouring poles. But we are then
immediately led to alinear equation inE. Instead of locking up two roots in between
themselves the three neighbouring poles are now associated with a single root and hence
are impotent to change the degree of repulsion between the roots. These findings are
supported also by numerical calculations in which we only took into account eitherP or Q.

4. Approximation by 2 × 2 matrices

According to a well known surmise of Wigner’s, the distribution of nearest-neighbour
spacings of large matrices from any of the classic Gaussian and circular ensembles are
extremely closely approximated by the simple spacing distributions of the corresponding
ensembles of 2× 2 matrices. It is therefore tempting to ask whether the degree of repulsion
between the near-real eigenvalues of our non-Hermitian operatorHeff can also be understood
by working with suitable 2×2 matrices. Here we propose to sketch a positive answer which
will nicely complement the intuitive arguments of the previous section and the numerical
results of section 2. For the sake of simplicity we shall confine ourselves to

Heff = H − igP P = XX† X†X = 1 (4.1)
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with H from either the Gaussian orthogonal or the Poissonian ensemble ofN ×N matrices
and X a complexN -component vector. We thus exclude the complex Hermitian rank 2
perturbation which is unable to influence the degree of repulsion anyway. Note that we
have now imposed normalization to unity on the vectorX and therefore incur a coupling
constantg which was previously hidden in the norm ofX.

In the strong-coupling limit of interest here,g � 1, it is not inappropriate to consider
the original resonator Hamiltonian as a ‘small perturbation’ of the damping term−igP .
Adopting that view one confronts, in zero order with respect toH , one large negative
imaginary eigenvalue,−ig, of Heff and the(N − 1)-fold degenerate eigenvalue zero, just
becauseP is of rank 1. In the sense of degenerate-state perturbation theory the most
important effect ofH on Heff is then to lift the latter degeneracy and thus to provide the
cloud of N − 1 near real eigenvalues which constitute the measurable resonances. We may
determine thoseN −1 eigenvalues in lowest order inH by diagonalizingH in the (N −1)-
dimensional null space ofP . That space is formed byN − 1 vectors ofN components
which are orthogonal toX but otherwise arbitrary.

Let us focus our attention on the(N −1)× (N −1) matrix H thus incurred, and here in
particular on two of its eigenvalues which are nearest neighbours of one another and have a
distance smaller than the distance of either to any third eigenvalue. We may then once more
invoke perturbation theory for nearly degenerate levels and consider a 2× 2 representative
of H formed with suitable approximants to the corresponding two eigenvectors ofH chosen
from theN − 1 vectors orthogonal toX. We may choose two such approximants by taking
two orthonormal eigenvectorsξ1, ξ2 of the originalN ×N matrix H whose eigenvaluesE1

andE2 are nearest neighbours and orthogonalize these onX to obtainξ̃i = ξi−X(i)∗X where
X(i) again denotes theith component ofX in the eigenbasis ofH . The 2×2 representative
of H in the null space ofP thus obtained is easily diagonalized and yields two eigenvalues
Ẽi separated by

Ẽ1 − Ẽ2 = (1 − |X(1)|2 − |X(2)|2)−1

√√√√ 2∑
i,j=1

3ij (Ei − X†HX)(Ej − X†HX) (4.2)

with a 2× 2 matrix 3 which must be and is in fact easily checked to be non-negative. We
conclude that to enforce a crossing of the two resonances,Ẽ1 − Ẽ2 = 0, we need to have
E1 = E2 = X†HX. The codimension of a crossing of resonances is thus larger by 1 than
the codimension of a crossing of the corresponding pair of original levels since bothE1

andE2 must be steered to coincide with the expectation value ofH in the stateX. We are
thereby again led to linear repulsion for an originally regularH and to quadratic repulsion
in the GOE case.

Having seen the degree of level repulsion to increase by 1 forH both from the Poissonian
and the Gaussian orthogonal ensemble one might be tempted to rush to inappropriate
extrapolation for the GUE. To rid oneself of such temptation one should, for the case
of H from the GUE, considerH in the eigenrepresentation ofP where it is a complex
HermitianN ×N matrix; upon discarding the first row and the first column one encounters
an (N − 1) × (N − 1) submatrix which represents the operatorH in the null space of
P ; but that latter matrix is as much a typical member of the GUE of(N − 1) × (N − 1)

matrices as is the original matrix of the GUE ofN × N matrices. This means that in the
strong-coupling limit the presence of the dissipative term iP does not change the spectral
statistics of the GUE ensemble—see figure 1(c) for numerical results. On the other hand,
when the originalH is from the GOE or the Poissonian ensemble, the transformation to
the eigenrepresentation ofP does change the statistical properties of the(N − 1)× (N − 1)
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submatrix such that the above considerations are necessary to redetermine the degree of
level repulsion.

Unfortunately, the expression (4.2) for the spacing of neighbouring resonances is not
sufficiently simple to suggest a way towards a closed form for the full spacing distribution
for the cloud of resonances ofHeff.

5. Experimental results

We can now proceed to a more detailed comparison of our results with the experimental
data. First, we recall from the previous two sections that the perturbation of the billiard
by the one-way handle leads to a degree of level repulsion as experimentally observed
but, due to its low rank, gives spacing distributions not otherwise quantitatively agreeing
with the observed distributions. Rather, for spacings not small compared to the mean one,
the distribution we find for our model matrices, like the experimentally observed ones,
resemble the distributions characteristic for the unperturbed billiards (see figure 1). More
specifically, for the rectangular resonator with the handle attachedP(S) displays linear
repulsion for smallS but decays exponentially in the wing; for the Sinai billiard with the
handle attached, the broken symmetry entails quadratic repulsion for smallS as for the GUE
but returns to resembling GOE behaviour in the wing. By the same reasoning one is led to
expect the number variance62(L) to reflect symmetry breaking for smallL but to cross
over to the case of preserved symmetry as the interval lengthL increase (see figure 2).

For a careful comparison of the theoretical and experimental spacing distributionsP(S)

we must first mention that not all levels (resonances) have been detected in the experiment.
The fractional amount of lost levels in the individual spectra is as high as 0.39 for the
asymmetric Sinai and 0.49 for the rectangular resonator [4]. Such deplorably large loss is
in contrast with previous measurements on resonators with time reversal invariance [11] for
which the fractional loss of levels amounted to merely about 0.07 and 0.14 for the Sinai
and rectangular billiards, respectively. The increased loss can be explained simply: the
unidirectional handle entails resonance broadening and thus a larger number of unresolved
resonances.

We have found it reasonable to divide the missing levels into two groups. The ones
from the first group did not show up in the experiment because the measuring antenna was
placed on a nodal line of the corresponding wavefunction. The fraction of such miss-outs
cannot be larger than, and should be given approximately by the amount of levels overlooked
in experiments performed without the one-way handle, i.e. 0.07 for the asymmetric Sinai
and 0.14 for the rectangular resonators. We assume that these missing levels are randomly
distributed among all levels of the system. In the model calculations the corresponding
fraction of randomly chosen levels was discarded.

The second group are levels overlooked due to level broadening. This group was
taken care of by discarding all levels numerically found for the model whose width was
larger then a certain part of the distance between neighbouring resonances,|=(λn)| >

A×min(|<[λn+1−λn)|, |<(λn−λn−1)]|. The constantA was chosen such that the combined
loss due to both groups of omitted levels coincided with the aforementioned loss reported by
the experimenters. It is worth mentioning that in both cases (Sinai and rectangular resonator)
the value ofA was found to be approximately the same,A ∼ 0.1. Numerical calculations
show that the exact choice of the parameterA does not have a substantial influence on the
character of the resulting spacing distribution, providedA is not taken to be too small.

The results obtained for nearest-neighbour spacing distribution and number variance are
plotted on figures 3 and 4, respectively. The agreement with the experimental data is now
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Figure 3. Experimentally obtained spacing distributionP(S) versusS (bins) compared with
results of our model calculation. (a) Rectangular resonator (total fraction of missing levels 49%,
fraction of randomly discarded levels 14%). (b) Asymmetric Sinai resonator (total fraction of
missing levels 39%, fraction of randomly discarded levels 7%).

very satisfactory indeed. The small deviations seen in figure 4 between the theoretical and
the experimental number variance increases more and more with increasingL. For L > 8
the experimental loss makes a reliable determination of62(L) impossible.

6. Conclusion and outlook

Our model involves a 3× 3 S-matrix, with one channel accounting for the weak coupling
of the antenna and the remaining two for the strong coupling of the one-way handle. It is
most satisfactory to see the fine quantitative agreement of the level spacing distributions of
the microwave experiment and the model.

An interesting by-product of the arguments of sections 3 and 4 is that of the two
terms contributing to the effective HamiltonianHeff, the Hermitian one,Q, in spite of
being complex, is incapable by itself of increasing the degree of repulsion due to its low
rank. While the dissipative term−iP has even lower rank, it is in fact responsible for the
modification of the spectral statistics since it is non-Hermitian, i.e. dissipative.

An immediate consequence arises for possible future experiments. Instead of attaching
a one-way handle one might attach a single channel ending either in a wave sink or just
opening up to the outside world like a trumpet. Just like a musical instrument such a
microwave trumpet should have well defined resonances and yet display broken time reversal
in the resonance statistics, due to the strongly coupled horn serving as an exit port.
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Figure 4. Number variance62(L) versusL evaluated from experimental data (marks). (a) For
rectangular resonator, compared with prediction for GOE with randomly disregarded levels. (b)
For Sinai resonator, compared with prediction for GUE with randomly disregarded levels. Total
amount of discarded levels same as in the previous figure.

A further remark is indicated in view of the experiment reported in [3]. There the
time reversal symmetry was broken by covering a whole wall of the resonator with ferritic
material. Inasmuch as anS-matrix approach like the one advocated here might apply one is
tempted to surmise that many more channels would be involved rather than just one or two.
Consequently, the pertinent spacing distribution as well as other spectral statistics should be
more faithful, in the overall behaviour, to the GUE than for the experiment on Sinai shaped
resonators of [4].
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